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1 Introduction
This article aims to summarize the existing literature concerned with growing
artificial neural networks. For each paper it will list the most significant
contribution. The following four questions will guide the summary of each
paper:

1. Why are models grown? What is the goal or metric the approach is
evaluated on?

2. When are the models grown?
3. Where are the models grown?
4. How are the the new parts initialized?

Each paper tries to make progress in answering at least one of the questions.
Hence, they can be used to categorize these papers.

1.1 Topics of Interest

This articles reviews publications on Artificial Neural Networks (ANN or
simply NN) which are grown in some way or another. It is focuses on networks
trained using backpropagation with gradient descent and excludes research
areas such as self-organizing maps (Boinee, De Angelis, and Milotti 2003),
growing neural gas (GNG, Fritzke 1994), self-organizing networks (Piastra
2009), and growing neural forests (Palomo and López-Rubio 2016).

Additionally, we do not consider an ANN to be grown if simply another
classification head is introduced when a new task is encountered in an
continuous learning (CL) setting. Instead, in continuous learning settings,
we require the shared parts of the network to be grown.

2 Categorization
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Table 1: Papers according to the three questions (see Section 1).

Short Title Year Why? When? Where? How? Paper

Net2Net 2016 Knowledge
transfer for
NAS(?),
already
mentions
lifelong
learning
(no experi-
ments)

Single
growth
event

Not
dynamic:
Width is
uniformly
grown,
new layers
are added
towards
the end

Function-
preserving
transforms
(identity
matrix)

Tianqi
Chen,
Goodfel-
low, and
Shlens
(2016)

Network
Morphism

2016 Knowledge
transfer

Single
growth
event

Not
dynamic:
Width is
uniformly
grown,
new layers
are added
towards
the end

Function-
preserving
transform,
less sparse
init.

Wei,
C. Wang,
Rui, et al.
(2016)

Progressive
Nets

2016 Continual
Learning

On new
tasks

New
columns

Random
init

Rusu et al.
(2016)

NAS using
Net Trans-
forms

2017 NAS Fixed
schedule

Decided by
RL agent

Function-
preserving
transforms

Cai,
Tianyao
Chen,
et al.
(2017)

NASH 2017 NAS Iterativly
grow and
train a set
of
networks,
then pick
the best

Randomly
selected
(multiple
alterna-
tives)

Function-
preserving
transforms

Elsken,
Metzen,
and Hutter
(2017)

NeST 2018 NAS Growth
phase,
then prune
phase with
iterative
retraining
in each
phase

Gradient-
based
selection

Initialization
based on
gradient

Dai, Yin,
and Jha
(2018)

Path-Level
Transfor-
mations

2018 NAS Fixed
schedule

Decided by
RL agent

Function-
preserving
transforms

Cai, Yang,
et al.
(2018)

Compacting
& Picking

2019 Hung et al.
(2019)

Progressive
Stacking

2019 Accelerate
pre-
training

Fixed
schedule

Duplicated
layers
added on
top

Duplication
of existing
layers

Gong et al.
(2019)

Firefly 2020 NAS and
CL

Fixed
Schedule

Decided
based on
gradient
informa-
tion

Function-
preserving
transforms

Wu et al.
(2020)

2



Short Title Year Why? When? Where? How? Paper

SCANN 2021 NAS Fixed
schedule

Connections
based on
gradient,
Neurons
based on
activation

Connections
based on
gradient,
Neurons
are split

Hassantabar,
Z. Wang,
and Jha
(2021)

GradMax 2022 NAS Fixed
Schedule

Fixed
(GradMax
could be
adapted
for this
decision)

By maxi-
mizing the
gradient of
new parts
using SVD

Evci et al.
(2022)

3 Summaries of the Reviewed Publications

The following sections give short summaries of each of the publications which
we deemed relevant.

3.1 Net2Net: Accelerating Learning via Knowledge Transfer
(Tianqi Chen, Goodfellow, and Shlens 2016)

Tianqi Chen, Goodfellow, and Shlens (2016) introduce the idea of training a
larger student network from an existing smaller teacher network by using
function-preserving transformations. These transformations (Net2Net opera-
tions) allow the rapid transfer of learned knowledge and omits the need to
retrain the larger network from scratch.

The authors propose two operations two increase the student network’s
size:

1. Growing in width: adding more units in each hidden layer and
2. growing in depth: adding more hidden layers.

Growth along the width dimension is achieved by randomly splitting
the original neurons (Net2WiderNet operation, see Figure 1). Input weights
of new neurons are copied from existing and the output weight of existing
neurons is equally distributed among all copies (the old neuron and all new
copies).

If no dropout is used, Tianqi Chen, Goodfellow, and Shlens (2016) propose
to add a small noise to the input weights to break the symmetry.

Growth along the depth dimension is achieved by adding new layers which
are initialized with the identity function. This requires idempotent activation
functions: the activation function ϕ needs to chosen such that ϕ(Iϕ(v)) for
any vector v. For rectified linear units (ReLU) this is the case, for some the
identity matrix may be replace with a different matrix, in some cases it may
not be as easy to construct an identity layer.
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Figure 1: Illustration of Net2WiderNet. Here, a single neuron is split in two
parts. However, multiple neurons can be split in one operation and each
neuron may be split in multiple parts

The experiments are conducted on an Inception network architecture
(Szegedy et al. 2014), a convolutional neural network (CNN). They show that
rapid transfer of knowledge through the two types of network transformations
is possible, allowing the faster exploration of model families contained in this
architecture space.

3.2 Network Morphism (Wei, C. Wang, Rui, et al. 2016)

Wei, C. Wang, Rui, et al. (2016) follow a very similar path to Tianqi Chen,
Goodfellow, and Shlens (2016): function-preserving transformations are used
to grow a parent (or “teacher”) network to a child (or “student”) network
while maintaining the same function.

Wei, C. Wang, Rui, et al. (2016) point out that using an identity layer
for growing in depth (which they refer to as “IdMorp”) may be sub-optimal
as it is extremely sparse. Additionally, they reiterate the requirement of
idempotent activation functions, which they deem insufficient.

Through an iterative procedure, a convolutional layer is decomposed into
two layers, retaining a large number of non-zero entries.

Wei, C. Wang, and C. W. Chen (2019) further improve the decomposi-
tion method in order to minimize the performance drop after transforming
(growing) the network.

Instead of relying on idempotent activation functions, Wei, C. Wang, Rui,
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et al. (2016) introduce parametric activation functions for new layers: A
parameter a interpolates between the identity function and the non-linear
activation function. a is initialized with one such that there is essentially
no activation function. Over the course of future training, the parameter
can be learned to make the activation function non-linear [for an example
see Figure 2 or the parametric rectified activation units (PReLU), He et al.
(2015)].
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ptanh(x, a) = ax + (1 a) tanh(x)

Figure 2: Illustration of an parametric tanh function: with a = 1 the function
is equal to the identity function, with a = 0 it is equal to tanh.

3.3 Progressive Neural Networks (Rusu et al. 2016)

Rusu et al. (2016) develop Progressive Networks for tackling catastrophic
forgetting. The idea is to grow networks when learning new tasks. The
older parts of the networks are frozen and their function incorporated using
adapters to allow for knowledge transfer from earlier tasks. Each time a new
tasks is learned, the network is further extended (a new column is added).

During inference (as well as during training), a task identifier is needed
to select the column which matches the current task. By freezing the older
parts of the networks during training, the performance on tasks learned in
early training is guaranteed to remain stable, as the respective weights (and
therefore the models function) cannot change.
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Figure 3: Figure from Rusu et al. (2016) illustrating the use of columns and
adapters.

3.4 Efficient Architecture Search by Network Transformation
(Cai, Tianyao Chen, et al. 2017)

Cai, Tianyao Chen, et al. (2017) propose using a reinforcement learning (RL)
agent as a meta-controller in order to decide when and where the network is
grown (using function-preserving transformations).

By using variable-length strings (see Zoph and Le 2017) to represent
the network architecture, an RL agent can be used to generate a function-
preserving transformation (Tianqi Chen, Goodfellow, and Shlens 2016).

The network architecture is encoded using an bidirectional LSTM and
the encoding is then fed to a number of actor networks which decides whether
and where transformations should be applied. For each possible network
transformation there is one actor network. For an illustration, see Figure 4.

In each growth phase, 10 networks are sampled from the meta-controller
and trained for 20 epochs (on image datasets CIFAR-10 and SVHN). Based
on the accuracy on held out validation data (accv), a reward for the meta-
controller is calculated. Instead of directly using the accuracy as reward signal,
Cai, Tianyao Chen, et al. (2017) propose using a non-linear transformation
in order to increase the reward if the accuracy is already high (an increase of
1% starting at 90% is more difficult than starting at 60%):
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Figure 4: Illustration of the architecture embedding. Figure from Cai, Tianyao
Chen, et al. (2017)

tan(accv × π

2 )

3.5 Simple And Efficient Architecture Search for Convo-
lutional Neural Networks (Elsken, Metzen, and Hutter
2017)

Elsken, Metzen, and Hutter (2017) propose an iterative NAS algorithm (Neu-
ral Architecture Search by Hillclimbing; short: NASH) which – in each growth
step – produces a set of grown child networks (using function-preserving
transformations). Each child is trained for a small number of epochs before
the most promising candidate is chosen. This best performing child is then
used for repeating the procedure (see fig. 5).

Additionally, they use a different set of network morphisms (or function-
preserving transformations) such as an interpolating layer (similar to the
parametric activation functions in Wei, C. Wang, Rui, et al. 2016): Here an
existing layer is replaced by an affine combination of the existing layer and
some new ones (starting with all weights of the new layers being 0, and the
weight of the existing layer to be 1).

3.6 NeST: A Neural Network Synthesis Tool Based on a
Grow-and-Prune Paradigm (Dai, Yin, and Jha 2018)

Dai, Yin, and Jha (2018) utilize growth with network architecture search
(NAS) in mind. They note that trial-and-error approaches are inefficient as a
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Figure 5: Illustration of the NASH algorithm. A set of children is grown and
trained. Then the best candidate is chosen. Figure from Elsken, Metzen, and
Hutter (2017).

process and can (as a product) lead to inefficient architectures which might
far more parameters than required. To combat these issues, they propose
NeST, which trains weights as well as the architecture.

Figure 6: Illustration of the steps for synthesizing an architecture using NeST
(figure from Dai, Yin, and Jha 2018).

NeST starts with an initial small network (a seed architecture). In a
first phase, the network is grown by adding new connections based on their
gradient (assuming they already existed with an weight of 0), and growing
new neurons in a layer l in order to connect existing neurons n and m in
layers l − 1 and l + 1 which if they were connected directly, exhibited a large
gradient magnitude:

Gm,n = ∂L

∂ul+1
m

xl−1
n ≥ threshold

Here, ul+1
m is the sum of incoming activations of neuron m in layer l+1 and

xl−1
n is the activation of neuron n in layer l + 1. The threshold is calculated

using a growth proportion.
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In a second phase, weights are iteratively pruned. Between each pruning
step, the network is retrained to recover its performance.

It should be noted however, that NeST does not grow additional layers
(nor does it remove layers) and hence is limited to a fixed number of layers.

3.7 Path-Level Network Transformation for Efficient Archi-
tecture Search (Cai, Yang, et al. 2018)

This publication offers an incremental extension to enable branched architec-
tures using function-preserving transformations (Tianqi Chen, Goodfellow,
and Shlens 2016) and growing the model using a RL agent based meta-
controller as in Cai, Tianyao Chen, et al. (2017).

Cai, Yang, et al. (2018) propose path-level transformations which allows
the branching of neural networks (whereas Tianqi Chen, Goodfellow, and
Shlens (2016) initially proposed just growing deeper and wider). Instead of
restricting the architecture space to sequences of layers, Cai, Yang, et al.
(2018) represent their network architecture as trees.

Figure 7: Illustration of a series of network transformations. The last part
shows the tree-structure of the transformation. Figure from Cai, Yang, et al.
(2018).

Each path-level transformation follows either an add or a concatenation
merge scheme. In the add scheme, a layer is replaced by two copies and each of
their outputs is multiplied by 0.5. This is similar to splitting a neuron, except
on a layer level. Transformation (a) in Figure 7 shows such a transformation.

In the concatenation scheme (step (b) in Figure 7), the outputs dimensions
(in a fully connected layer: neuron outputs, in a convolutional layer: output
channels, etc.) are split among the different branches and the output of each
branch is later concatenated. This introduces branches while preserving the
function and each branch is unique.

These two schemes do not introduce a significant change to the network.
However, in combination with the existing operations (in Tianqi Chen, Good-
fellow, and Shlens 2016), this can lead to a variety of branched architectures.
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3.8 Compacting, Picking and Growing for Unforgetting Con-
tinual Learning (Hung et al. 2019)

coming soon

Figure 8

3.9 Efficient Training of BERT by Progressively Stacking
(Gong et al. 2019)

Gong et al. (2019) observe, that self-attention distributions across different
layers of well-trained BERT model typically exhibit a large degree of similarity.
Hence, they propose starting the pre-training of BERT models with a smaller
number (3) of hidden layers. Over the course of the training, these pre-trained
layers are duplicated twice (and added on top, see Figure 9) and trained
between each stacking operations in order to differentiate the layers.

By training with few layers for a large portion of the pre-training, Gong
et al. (2019) can reduce the pre-training time by ∼ 35% with only a small
loss of performance.

3.10 Firefly Neural Architecture Descent: A General Ap-
proach for Growing Neural Networks (Wu et al. 2020)

Wu et al. (2020) propose alternating between training and growth steps. In
each growth step, the network is grown to be wider and deeper. During each
growth step, multiple candidate elements (neurons or layers) are temporarily
added to the network. The contribution of each candidate part is multiplied
with some step size ϵ to maintain the original function. By using the training
data (or some portion of it), one can then calculate how beneficial these new
parts might be during future training. Wu et al. (2020) show that by using
Taylor approximation, this reduces to looking a the gradients of these new
parts.
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Figure 9: In each stacking step, the number of layers is doubled (Gong et al.
2019).

Additionally, Wu et al. (2020) test their approach in a CL task-incremental
setting. For each task, a neuron mask is created (which can be retrieved
using the available task identifier). This allows the model to share structure
while maintaining its function on old tasks and hence to maintain a good
average accuracy even after multiple tasks have been learned.

Figure 10: Figure from Wu et al. (2020) illustrating how new neurons can be
added.

3.11 SCANN: Synthesis of Compact and Accurate Neural
Networks (Hassantabar, Z. Wang, and Jha 2021)

Hassantabar, Z. Wang, and Jha (2021) develop SCANN to produce compact
and accurate feed-forward networks (FFNNs). In this paper, they aim to
improve on prior work (namely: NeST) and allow the method to grow in
depth as well.

SCANN includes three operations to modify the network architecture:

1. Growing new connections,
2. growing new neurons, and
3. pruning existing connections.
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New connections are grown based on the gradient magnitude they would
exhibit (if they were present). This follows the proposal of Dai, Yin, and Jha
(2018) for NeST.

New neurons are grown based on the activations existing neurons exhibit
when training data is passed through the network: Neurons with large
activation magnitude are selected for splitting.

Finally, connections which have small weight magnitudes are pruned.
This is similar to NeST as well.

Hassantabar, Z. Wang, and Jha (2021) describe three training schemes
with different configurations of network modification operations: Different
orders of executing the operations as well as different degrees of growth and
pruning and different sizes of initial networks.

They show that all of these three training schemes can yield well per-
forming models with different numbers of parameters.

3.12 GradMax: Growing Neural Networks Using Gradient
Information (Evci et al. 2022)

Evci et al. (2022) focus on the question how new neurons are initialized.
They propose initializing new neurons such that the gradient norm of new
weights are maximized while maintaining the models function. By enforcing
large gradient norms of the new weights, the objective function is guaranteed
to decrease in the next step of gradient descent.

When using a step size of 1
β on a function with a β-Lipschitz gradient,

the loss is upper-bounded by:

L(Wnew) ≤ L(W ) − β

2 ∥∇L(W )∥2

While a constant Lipschitz constant generally does not necessarily exist
in neural networks the authors use this as a motivation to assume that large
gradient norms will lead to large decreases in the loss function after the next

In GradMax, the maximum gradient norms (with some constraint) are
approximated using singular value decomposition (SVD). The authors addi-
tionally provide experiments using optimization to produce large gradient
norms instead of using the closed-form solution of SVD. While they find that
SVD usually produces better results, it can only be used, if the activation
function returns 0 given an input of 0.

The authors note that this idea could also be utilized to select where
new neurons should be grown. The decision where to add new neurons could
be made by looking at the singular values (e,g, selecting the largest or adding
a neuron, once the singular value reaches a threshold). This idea is very
similar to the strategy of Wu et al. (2020) which use a very similar technique
to choose where to grow neurons (but use a different initialization strategy).
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